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Arithmetic and geometric averages are important and somewhat controversial measurements of 

the past and future investment returns.  Numerous publications have discussed the pros and cons 

of these measurements as well as relationships between them.  Yet, the controversy surrounding 

arithmetic and geometric averages appears to persist. 

 

Vital decisions for pension plans, for example, are often based on estimates of future investment 

returns.  It is imperative to utilize appropriate measurements of returns and apply them properly 

in a forward-looking manner.  In particular, it is important to distinguish arithmetic and 

geometric averages for asset classes and portfolios as well as specify the relationships between 

these averages.   

 

A popular formula presented in several publications stipulates that the geometric average is 

approximately equal to the arithmetic average minus half of the variance.  However, a proper 

justification for this formula and the assessment of the quality of this approximation are hard to 

find.  Moreover, this popular formula may significantly underestimate the geometric return in 

practical applications. 

 

Recognizing the need for clarity in this area and the desirability of alternative solutions, this 

paper presents three additional formulas for approximate calculations of geometric averages 

and provides simple quantitative explanations for all four formulas.  The results of these 

formulas are compared to historic geometric averages and to each other. The paper shows in 

particular, that the three other formulas are often superior to the popular one. 

 

This author hopes that this paper would be useful to practitioners in clarifying the relationship 

between arithmetic and geometric averages as well as their pros and cons. 

 

 

Arithmetic and geometric averages are some of the most commonly utilized measurements of 

investment returns.
1
  Despite their extensive utilization, however, there has been a great deal of 

controversy and confusion surrounding these measurements.  A number of publications have 

attempted to clarify the issues related to arithmetic and geometric averages, but the controversy 

and confusion appear to persist.
2
 

 

According to de La Grandville [1998], “A number of serious, widely held errors and 

misconceptions about the long-term expected rate of return need to be dispelled.”  One of these 

“misconceptions” is related to the calculation of the geometric return of a portfolio.  According 

to several publications, “the geometric average is approximately equal to the arithmetic average 

minus half of the variance.”  Despite the popularity of this formula, few publications attempt to 

justify this approximation and gauge its quality. 

 

As demonstrated in this paper, this formula is the result of a couple of relatively crude 

approximations.  More troubling, this formula tends to underestimate the geometric average.  

This tendency, in particular, should be of concern to pension plans that employ geometric 

portfolio returns to determine their discount rates.   
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Calculations of geometric returns can have a significant impact on asset allocation decisions.  A 

pension plan, for example, may select the lowest risk portfolio with the geometric return equal to 

the plan’s discount rate (by itself, an idea of questionable utility).  A calculation that 

underestimates the geometric return would force the plan to needlessly increase the riskiness of 

the portfolio in order to hit the “target” return.  In other words, the plan would take additional 

risk solely due to questionable math. 

 

Unlike geometric averages, arithmetic averages are relatively easy to use.  In particular, the 

arithmetic return for a portfolio is equal to the weighted average of the arithmetic returns of 

underlying asset classes.  This “rule,” however, does not work for geometric returns – a weighted 

average of asset classes’ geometric returns is not equal to the geometric return of the 

corresponding portfolio.  Therefore, there is a need to “convert” arithmetic portfolio returns to 

the geometric ones, and vice versa.   

 

Attempting to establish a better understanding of the relationship between arithmetic and 

geometric averages, this paper  

 

 provides a simple quantitative explanation for the abovementioned popular formula; 

 presents three more formulas that connect arithmetic and geometric returns; 

 develops connections between all four formulas; 

 demonstrates that the popular formula tends to produce sub-optimal results; 

 identifies the formula that should be expected to produce better results. 

 

Geometric and Arithmetic Averages: Return Series 

 

For a series of returns, this section develops four formulas that connect arithmetic and geometric 

averages. 

 

The arithmetic average A of the series of returns 1, , nr r  is defined simply as the average value 

of the series: 

 

1

1 n

k

k

A r
n 

        (1) 

 

One of the main advantages of the arithmetic average is it is an unbiased estimate of the return.  

One of the main disadvantages of the arithmetic average is the probability of achieving the 

arithmetic average return may be unsatisfactory.  In other words, as a prediction of future returns, 

the arithmetic average may be too optimistic.  Another disadvantage of the arithmetic return is its 

“incompatibility” with the starting and ending asset values.  Specifically, the starting asset value 

multiplied by the compounded arithmetic return factor  1
n

A is greater than the ending asset 

value.
3
 

 

The concept of geometric average is specifically designed to correct this problem.  If A0 and An 

are the starting and ending asset values correspondingly, then, by definition, 
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   0 11 1 n nA r r A       (2) 

 

The geometric average G is defined as the rate of return that connects the starting and ending 

asset values if assumed in all periods.  Namely, the starting asset value multiplied by the 

compounded return factor  1
n

G is equal to the ending asset value: 

 

 0 1
n

nA G A       (3) 

 

Combining (2) and (3), we get a standard “textbook” definition of the geometric average G: 

 

 
1

1

1 1
n

n
k

k

G r


         (4) 

 

Let us try to determine how the arithmetic and geometric averages relate to each other.  Firstly, it 

is well-known that the arithmetic average is always greater or equal to the arithmetic average:
4
 

 

A G        (5) 

 

Following a long-established tradition, only the first two moments of the underlying variables 

will be used in developing relationships between A and G.  Therefore, the relationships between 

A and G considered in this paper also involve variance V. 

 

Let us present four formulas that connect arithmetic and geometric returns and specify the 

required approximations to derive each formula.
5
   

 

Formula # 1 (A1) 

 

Let us make the following two approximations on the right side of (4). 

 

1. For all k, replace each factor  
1

1 n
kr  

by its Maclaurin series expansion up to the second 

degree. 

2. In the resulting product, ignore all summands of the third degree and higher. 

 

See the Appendix for more details.  After these approximations, the right side of (4) becomes

2A V  , where V is the sample variance defined as
6
 

 

 
2

1

1 n

k

k

V r A
n 

       (6)
 
 

 

Therefore, we get the following relationship (denoted as (A1) throughout this paper): 
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2G A V        (A1) 

 

Relationship (A1) is the popular formula discussed above; it is well-known among practitioners.
7
   

 

Formula # 2 (A2) 

 

Note that (4) implies 

 

   
22

1

1 1
n

n
k

k

G r


       (7) 

 

Let us make the following two approximations on the right side of (7). 

 

1. For all k, replace each factor  
2

1 n
kr  

by its Maclaurin series expansion up to the second 

degree. 

2. In the resulting product, ignore all summands of the third degree and higher. 

 

After these approximations, the right side of (7) becomes  
2

1 A V  , where V is defined in (6).  

Therefore, we get the following relationship (denoted as (A2) throughout this paper): 

 

   
2 2

1 1G A V        (A2) 

 

Relationship (A2) is not as well-known as (A1) among practitioners, even though it has been 

known for a long time.
8
  Interestingly, formula (A2) is exact when the return series has just two 

points (see the Appendix for more details).   

 

Formula # 3 (A3) 

 

Note that (4) implies 

 

   
1

1
ln 1 ln 1

n

k

k

G r
n 

       (8) 

 

On the right side of (8), let us replace each summand  ln 1 kr  
by its Taylor series expansion 

around A up to the second degree.  See the Appendix for more details.   

 

After this approximation, the right side of (8) becomes    
21

ln 1 1
2

A V A


   .  Therefore, we 

get the following relationship (denoted as (A3) throughout this paper): 
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     
21

ln 1 ln 1 1
2

G A V A


        (A3) 

or, equivalently, 

 

   
21

1 1 exp 1
2

G A V A
 

     
 

   (A3) 

 

In this author’s experience, relationship (A3) is little known among practitioners, even though it 

has been presented in some publications.
9
 

 

Formula # 4 (A4) 

 

In (A3), using approximation  ln 1 x x  , let us replace  
2

1V A


 with   2
ln 1 1V A


  .  As 

a result, we get the following relationship (denoted as (A4) throughout this paper): 

 

    
1 2

2
1 1 1 1G A V A




        (A4) 

 

As demonstrated in the next section, this relationship is exact when arithmetic and geometric 

averages (means) are defined for a lognormal distribution.   

 

It should be noted that there is a sequence of approximations and simplifications that turn (A3) 

into (A4), as presented above, then turn (A4) into (A2), and then turn (A2) into (A1) (see the 

Appendix for more details).  It is also worth noticing that the geometric average estimate (A4) is 

always greater than (A3), which in turn is always greater than (A2).
10

  Loosely speaking, 

 

    (A2) < (A3) < (A4) 

 

Interestingly, the geometric average estimate (A2) is not necessarily greater than (A1), although 

this is true for most practical examples.
11

  See the Appendix for more details. 

 

To recap, formulas (A1) – (A4), which work for any return sample, establish approximate 

relationships between the geometric and arithmetic averages and the variance.  These formulas 

are based on Taylor series expansions up to the second degree. 

 

Geometric and Arithmetic Means: Return Distributions 

 

The previous section developed the relationships between the arithmetic and geometric averages 

defined for a series of returns.  This section, in contrast, develops similar results when the 

distribution of return is given.  To avoid confusion with the previous section, this section defines 

arithmetic and geometric means (rather than averages), which are denoted as E and M 

correspondingly (as opposed to averages A and G in the previous section). 

 

In this case, the arithmetic mean E of return R is defined as the expected value of R:
12
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 E E R   

 

The geometric mean M of return R is defined as follows: 

 

   exp ln 1 1M E R       (9) 

 

The primary motivation for these definitions comes from the fact that the arithmetic and 

geometric means are the limits of appropriately selected series of arithmetic and geometric 

averages, as demonstrated below.   

 

Specifically, let us define arithmetic averages nA  and geometric averages nG  for a series of 

independent identically distributed returns kr : 

 

1

1 n

n k

k

A r
n 

        (10) 

 

 
1

1

1 1
n

n
n k

k

G r


        (11) 

 

According to the Law of Large Numbers (LLN), nA converges to E.  Also, from (11) we have 

 

   
1

1
ln 1 ln 1

n

n k

k

G r
n 

       (12) 

 

Again, according to LLN,  
1

1
ln 1

n

k

k

r
n 

  and, therefore,  ln 1 nG  converge to the expected 

value   ln 1E R .  Consequently, nG converges to    exp ln 1 1E R  , which is equal to M.   

 

To recap, nA converges to E and nG  converges to M when n tends to infinity.  As discussed in the 

previous section, relationships (A1) – (A4) are true for nA  and nG , where sample variance nV is 

defined similar to (6): 

 

 
2

1

1 n

n k n

k

V r A
n 

       (13) 

 

Since series nV converges to the variance of returns V when n tends to infinity, relationships (A1) 

– (A4) are true for E and M as well: 
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2M E V        (A1) 

 

   
2 2

1 1M E V        (A2) 

 

   
21

1 1 exp 1
2

M E V E
 

     
 

   (A3) 

 

    
1 2

2
1 1 1 1M E V E




        (A4) 

 

It should be emphasized that, as a general principle, one should avoid approximations whenever 

direct calculations are possible.
13

  As demonstrated below, (A4) represents the exact relationship 

between the arithmetic and geometric means under common assumptions. 

 

Let us assume that the return factor 1 R  is lognormally distributed, which means  ln 1 R  is 

normally distributed with parameters   and  .  Under this assumption, the following formulas 

are well-known:
14

 

 

    21
1 exp

2
E  

 
   

 
    (14) 

 

     1 expM        (15) 

 

        2 2exp 2 exp 1V         (16) 

 

It easily follows from (14)-(16) that the geometric mean is calculated as (A4): 

 

        
1 2

2
1 1 1 1M E V E




        (A4) 

 

Thus, the relationship (A4) is exact under the lognormal assumption. 

 

If there is a need to calculate the arithmetic mean when the geometric mean and the variance are 

given, then, from (A4), the arithmetic mean is calculated as follows: 

 

     
 

2

1 1 4
1 1 1

2 2 1

V
E M

M
    


   (17) 

 

Which formula among (A1) – (A4) should work better?  The utilization of independent 

identically distributed lognormal return factors may be a reasonable forward-looking assumption.  
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Therefore, formula (A4) may be the right choice for forward-looking analysis.  A priori, 

however, this is not necessarily the case for historical data.  The next section explores this issue. 

 

Historical Arithmetic and Geometric Averages 

 

This section presents the arithmetic and geometric averages for historical data and analyzes the 

quality of the approximations discussed in prior sections.  The section analyzes three sets of 

historical data: equity real rates of return (Exhibit 1),
15

 equity premium relative to bills (Exhibit 

2), and equity premium relative to bonds (Exhibit 3) from 1900 to 2005.  Each dataset contains 

the arithmetic averages, geometric averages and standard deviations calculated exactly.  For each 

dataset, we calculate four approximations of the geometric averages (A1) – (A4) and compare 

the approximations to the actual values. 

 

Exhibit 1 

Arithmetic 

Average

Standard 

Deviation

Geometric 

Average A1 A2 A3 A4 Best Worst

Australia 9.21% 17.64% 7.70% 7.65% 7.78% 7.79% 7.81% A1 A4

Belgium 4.58% 22.10% 2.40% 2.14% 2.22% 2.27% 2.32% A4 A1

Canada 7.56% 16.77% 6.24% 6.15% 6.24% 6.26% 6.28% A2 A1

Denmark 6.91% 20.26% 5.25% 4.86% 4.97% 5.01% 5.04% A4 A1

France 6.08% 23.16% 3.60% 3.40% 3.52% 3.58% 3.64% A3 A1

Germany* 8.21% 32.53% 3.09% 2.92% 3.20% 3.43% 3.63% A2 A4

Ireland 7.02% 22.10% 4.79% 4.58% 4.71% 4.76% 4.81% A4 A1

Italy 6.49% 29.07% 2.46% 2.26% 2.45% 2.60% 2.73% A2 A4

Japan 9.26% 30.05% 4.51% 4.74% 5.05% 5.20% 5.35% A1 A4

Netherlands 7.22% 21.29% 5.26% 4.95% 5.09% 5.13% 5.17% A4 A1

Norway 7.08% 26.96% 4.28% 3.45% 3.63% 3.74% 3.84% A4 A1

South Africa 9.46% 22.57% 7.25% 6.91% 7.11% 7.16% 7.20% A4 A1

Spain 5.90% 21.88% 3.74% 3.51% 3.62% 3.66% 3.71% A4 A1

Sweden 10.07% 22.62% 7.80% 7.51% 7.72% 7.77% 7.82% A4 A1

Switzerland 6.28% 19.73% 4.48% 4.33% 4.43% 4.46% 4.49% A4 A1

U.K. 7.36% 19.96% 5.50% 5.37% 5.49% 5.52% 5.55% A2 A1

U.S. 8.50% 20.19% 6.52% 6.46% 6.60% 6.64% 6.67% A1 A4

World 7.16% 17.23% 5.75% 5.68% 5.77% 5.78% 5.80% A2 A1

World ex-U.S. 7.02% 19.79% 5.23% 5.06% 5.17% 5.21% 5.24% A4 A1

* excludes 1922–1923

Source: Dimson, Marsh, and Staunton (2006).

Geometric Average ApproximationData

Equity Real Rates of Return, 1900–2005
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Exhibit 2 

Arithmetic 

Average

Standard 

Deviation

Geometric 

Average A1 A2 A3 A4 Best Worst

Australia 8.49% 17.00% 7.08% 7.05% 7.15% 7.17% 7.18% A1 A4

Belgium 4.99% 23.06% 2.80% 2.33% 2.43% 2.49% 2.55% A4 A1

Canada 5.88% 16.71% 4.54% 4.48% 4.55% 4.57% 4.59% A2 A1

Denmark 4.51% 19.85% 2.87% 2.54% 2.61% 2.64% 2.67% A4 A1

France 9.27% 24.19% 6.79% 6.34% 6.56% 6.62% 6.69% A4 A1

Germany* 9.07% 33.49% 3.83% 3.46% 3.80% 4.05% 4.27% A2 A4

Ireland 5.98% 20.33% 4.09% 3.91% 4.01% 4.05% 4.08% A4 A1

Italy 10.46% 32.09% 6.55% 5.31% 5.70% 5.90% 6.07% A4 A1

Japan 9.84% 27.82% 6.67% 5.97% 6.26% 6.37% 6.48% A4 A1

Netherlands 6.61% 22.36% 4.55% 4.11% 4.24% 4.29% 4.34% A4 A1

Norway 5.70% 25.90% 3.07% 2.35% 2.48% 2.57% 2.66% A4 A1

South Africa 8.25% 22.09% 6.20% 5.81% 5.97% 6.02% 6.06% A4 A1

Spain 5.46% 21.45% 3.40% 3.16% 3.26% 3.30% 3.34% A4 A1

Sweden 7.98% 22.09% 5.73% 5.54% 5.70% 5.74% 5.79% A3 A1

Switzerland 5.29% 18.79% 3.63% 3.52% 3.60% 3.63% 3.65% A3 A1

U.K. 6.14% 19.84% 4.43% 4.17% 4.27% 4.30% 4.33% A4 A1

U.S. 7.41% 19.64% 5.51% 5.48% 5.60% 5.63% 5.66% A1 A4

World 5.93% 19.33% 4.23% 4.06% 4.15% 4.18% 4.21% A4 A1

World ex-U.S. 6.07% 16.65% 4.74% 4.68% 4.76% 4.77% 4.79% A2 A1

* excludes 1922–1923

Source: Dimson, Marsh, and Staunton (2006).

Equity Premium Relative to Bills, 1900–2005

Data Geometric Average Approximation
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Exhibit 3 

Arithmetic 

Average

Standard 

Deviation

Geometric 

Average A1 A2 A3 A4 Best Worst

Australia 7.81% 18.80% 6.22% 6.04% 6.16% 6.18% 6.21% A4 A1

Belgium 4.37% 20.10% 2.57% 2.35% 2.42% 2.45% 2.49% A4 A1

Canada 5.67% 17.95% 4.15% 4.06% 4.13% 4.16% 4.18% A3 A1

Denmark 3.27% 16.18% 2.07% 1.96% 1.99% 2.01% 2.03% A4 A1

France 6.03% 22.29% 3.86% 3.55% 3.66% 3.71% 3.76% A4 A1

Germany* 8.35% 27.41% 5.28% 4.59% 4.83% 4.94% 5.04% A4 A1

Ireland 5.18% 18.37% 3.62% 3.49% 3.56% 3.59% 3.61% A4 A1

Italy 7.68% 29.73% 4.30% 3.26% 3.49% 3.65% 3.80% A4 A1

Japan 9.98% 33.06% 5.91% 4.52% 4.89% 5.12% 5.32% A4 A1

Netherlands 5.95% 21.63% 3.86% 3.61% 3.72% 3.76% 3.81% A4 A1

Norway 5.26% 27.43% 2.55% 1.50% 1.62% 1.75% 1.86% A4 A1

South Africa 7.03% 19.32% 5.35% 5.16% 5.27% 5.30% 5.33% A4 A1

Spain 4.21% 20.20% 2.32% 2.17% 2.23% 2.27% 2.31% A4 A1

Sweden 7.51% 22.34% 5.21% 5.01% 5.16% 5.21% 5.26% A3 A1

Switzerland 3.28% 17.52% 1.80% 1.75% 1.78% 1.80% 1.83% A3 A1

U.K. 5.29% 16.60% 4.06% 3.91% 3.97% 3.99% 4.01% A4 A1

U.S. 6.49% 20.16% 4.52% 4.46% 4.56% 4.60% 4.63% A2 A4

World 5.18% 15.19% 4.10% 4.03% 4.08% 4.09% 4.10% A4 A1

World ex-U.S. 5.15% 14.96% 4.04% 4.03% 4.08% 4.09% 4.10% A1 A4

* excludes 1922–1923

Source: Dimson, Marsh, and Staunton (2006).

Equity Premium Relative to Bonds, 1900–2005

Data Geometric Average Approximation

 

Exhibits 1-3 contain data for 17 countries plus two totals – 19 data series overall.  For each data 

series, we measure the distance between approximations (A1) – (A4) of the geometric average 

and the actual geometric average.  The approximation that is closest to actual value is ranked the 

best; the farthest is ranked the worst.  For example, looking at the data for Australia in Exhibit 3, 

(A1) is 18 bps away from the actual value (6.04% vs. 6.22%), (A2) is 6 bps away from the actual 

value (6.16% vs. 6.22%), (A3) is 4 bp away from the actual value (6.18% vs. 6.22%), and (A4) is 

1 bp away from the actual value (6.21% vs. 6.22%).  Therefore, (A4) is ranked the best and (A1) 

is ranked the worst. 

 

For each exhibit and each approximation, we count the number of data series for which the 

approximation is the best and the worst.  These counts are presented in Exhibit 4.  
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Exhibit 4 

Best Worst Best Worst Best Worst Best Worst

Equity Premium 

Relative to Bonds 

(Exhibit 1 ) 3 14 5 0 1 0 10 5

Equity Premium 

Relative to Bills 

(Exhibit 2 ) 2 16 3 0 2 0 12 3

Equity Real Rates 

of Return 

(Exhibit 3 ) 1 17 1 0 3 0 14 2

Total # 6 47 9 0 6 0 36 10

Total % 11% 82% 16% 0% 11% 0% 63% 18%

Approximation Rankings

A1 A2 A4A3

 
Exhibit 5 

Equity Premium 

Relative to Bonds 

(Exhibit 1 )

14 11 10

Equity Premium 

Relative to Bills 

(Exhibit 2 )

16 13 12

Equity Real Rates 

of Return 

(Exhibit 3 )

17 14 14

Total # 47 38 36

Total % 82% 67% 63%

A4 Compared to A1-A3

A4 is better than A1 A4 is better than A2 A4 is better than A3
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Overall, (A4) largely looks better than (A1) – (A3), as it is the best approximations in 63% cases 

(see Exhibit 4).  (A1) largely looks worse than (A2) – (A4), as it is the worst approximation in 

82% cases (see Exhibit 4).  (A2) and (A3) are mostly in-between, and they are never the worst.  

The results within Exhibits 1-3 are consistent with this conclusion. 

 

Exhibit 5 contains the results of direct comparisons of (A4) to (A1) – (A3) for each data series.  

(A4) works better than (A1) in 82% cases, better than (A2) in 67% cases, and better than (A3) in 

63% cases.  The results within Exhibits 1-3 are consistent with this conclusion.  While the results 

of (A4) are not vastly superior, they do demonstrate a clear pattern.  Another clear pattern is the 

tendency of (A1) to underestimate the geometric return.  It happens in 56 out of 57 data series, 

and, sometimes, by a significant margin. 

 

Yet, (A1) should not be dismissed easily, not so fast, at least.  (A1) provides the best match for 

the U.S. data in Exhibits 1 and 2; it is a close second in Exhibit 3, in which it is also the best 

match for the “World ex. U.S.” data series. 

 

The results of (A1) – (A4) can occasionally be far apart, especially for high volatility portfolios.  

Let us consider the following example.  Exhibit 6 shows the data for the U.S. stocks divided into 

“large” and “small” stocks (as defined in the source).  For the large stocks, (A1) is the best and 

(A4) is the worst approximation.  For the small stocks, the opposite is true – (A4) is the best and 

(A1) is the worst approximation.  But (A1) is not just the worst approximation among the four – 

it is astounding 162 bps lower than the actual value.  (A2) is 100 bps closer, but still 

disappointing 62 bps below the actual value.  (A3) is another 37 bps closer, but still 25 bps below 

the actual value.  (A4) is the only one that provides a decent approximation.  

 

Exhibit 6 

U.S. Large and Small Stocks

Large Stocks

Data

Arithmetic Average 12.49% A1 A2 A3 A4

Geometric Average 10.51% 10.43% 10.64% 10.67% 10.70%

Standard Deviation 20.30%

Small Stocks

Data

Arithmetic Average 18.29% A1 A2 A3 A4

Geometric Average 12.19% 10.57% 11.57% 11.94% 12.26%

Standard Deviation 39.28%

Source: Bodie [2004], Table 5.3, p. 141.

Geometric Average Approximation

Geometric Average Approximation
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Conclusion 

 

This paper analyzes the following four relationships between arithmetic and geometric averages 

(means) that work for any return sample: 

 

2G A V        (A1) 

 

   
2 2

1 1G A V        (A2) 

 

   
21

1 1 exp 1
2

G A V A
 

     
 

   (A3) 

 

    
1 2

2
1 1 1 1G A V A




        (A4) 

 

When the return factor is lognormally distributed (a common forward-looking assumption), the 

relationship (A4) is exact: 

 

        
1 2

2
1 1 1 1M E V E




        (A4) 

 

In this case, there is no need for approximations.   

 

Relationship (A1) is the simplest, popularized in many publications, but usually sub-optimal and 

tends to underestimate the geometric return.  Relationships (A2) – (A4) are slightly more 

complicated, but, in most cases, should be expected to produce better results than (A1). 

 

Overall, (A4) looks like a winner – it works better in both backward- and forward looking 

settings.  Still, (A1) – (A3) should not be dismissed summarily, and more research is needed to 

determine the conditions under which a particular formula may work better.  For a practitioner, it 

may be a good idea to compare the results of all four formulas.  There may be significant 

disparities among these approximations, especially for high volatility portfolios.  

 

Both arithmetic averages and geometric averages are required for a clear understanding of 

investment returns.  This author hopes that this paper would be useful to practitioners in 

clarifying the relationships between these averages as well as their pros and cons.   
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APPENDIX:  The Development of Formulas (A1) – (A3) and Transitions from (A4) to (A1) 

 

This Appendix contains the technical details of the development of formulas (A1) – (A4).  The 

arithmetic average A of a series of returns 1, , nr r  is defined as the average value of the series: 

 

1

1 n

k

k

A r
n 

        (1) 

 

The geometric average G of a series of returns 1, , nr r  is defined as follows: 

 

 
1

1

1 1
n

n
k

k

G r


         (4) 

 

Sample variance V is defined as  

 

 
2

1

1 n

k

k

V r A
n 

 
 
     (6) 

 

Formula # 1 (A1) 

 

Let us take the Maclaurin series expansion for the function    
1

1 nf x x  up to the second 

degree and ignore the remainder: 

 

 
1

2

2

1 1
1 1

2
n

n
x x x

n n


        (18) 

 

Substituting (18) into (4) and ignoring summands of the third degree and higher, we get (A1): 

 

2

2
1

2

2 2
1 1

1 1
1 1

2

1 1 1

2

2

n

k k

k

n n n

k k l k

k k l k

n
G r r

n n

n
r r r r

n n n

A V



  

 
      

 


   

 



      (19) 

 

Formula # 2 (A2) 

 

From the definition of G, we get 

 

   
22

1

1 1
n

n
k

k

G r


       (20) 
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Let us take the Maclaurin series expansion for the function    
2

1 nf x x  up to the second 

degree and ignore the remainder: 

 

 
2

2

2

2 2
1 1

2
n

n
x x x

n n


        (21) 

 

Substituting (21) into (20) and ignoring summands of the third degree and higher, we get (A2): 

 

 

 

2 2

2
1

2

2 2
1 1

2

2 2
1 1

2

2 4 2
1

1

n

k k

k
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i k l k

n
G x x

n n

n
x x x x

n n n

A V



  

 
     

 


    

  



     (22) 

 

Formula # 3 (A3) 

 

Let us take the Taylor series expansion for the function    ln 1f x x  around point A up to the 

second degree and ignore the remainder: 

 

    
 

 

2

2
ln 1 ln 1

1 2 1

x Ax A
x A

A A


    

 
   (23) 

 

Using (23) on the right side of (8), we get (A3): 
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k

n n

k k
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G r
n

A r A r A
n A nA

V
A

A



 

   

      
 

  




   (A3) 

 

Now, below are the sequences of approximations and simplifications that turn (A3) into (A4), 

then turn (A4) into (A2), and then turn (A2) into (A1) as well as the proof that  

 

    (A2) < (A3) < (A4) 

 

(A3) – (A4) Transition 
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The transition from (A3) to (A4) is achieved via replacing  
2

1V A


 with   2
ln 1 1V A


 

(using approximation  ln 1 x x  ).  Noting that 1 expx x  , we get 

 

        
1 2

2 21
1 exp 1 1 1 1

2
A V A A V A


  

       
 

 

 

which means the geometric average estimate (A4) is no less than (A3). 

 

(A4) – (A2) Transition 

 

The transition from (A4) to (A2) is achieved via replacing   
1

2
1 1V A




  with  
2

1 1V A


 

(using approximation  
1

1 1x x


   ).  Noting that  
1

1 1x x


   , we get 

 

            
1 2 1 2 1 2

2 2 2
1 1 1 1 1 1 1A V A A V A A V


 

           

 

which means the geometric average estimate (A3) is no less than (A2). 

 

(A2) – (A1) Transition 

 

The transition from (A2) to (A1) is achieved via replacing  
2

1 G  and  
2

1 A  with 1 2A and 

1 2G correspondingly (using approximation  
2

1 1 2x x   ).   

 

The geometric average estimate (A1) is not necessarily less than (A2), although this is true for all 

data series in Exhibits 1- 3 and most practical applications.  For example, if 1 99%r    and 

2 100%r  , then the geometric average estimate (A1) is equal to -49%, and the geometric 

average estimate (A2) is equal to -86% (which is equal to the actual geometric average of this 

return series, see below). 

 

Finally, formula (A2) is exact when the return series contains just two points, due to the 

following. 
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Important Information 
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responsibility or liability (including for indirect, consequential or incidental damages) for any error, 
omission or inaccuracy in such information and for results obtained from its use.  Information and 

opinions are as of the date indicated, and are subject to change without notice. 
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accounting, tax, investment, or other professional advice. 
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1 Arithmetic and geometric averages are two of the three classical Pythagorean means.  The third one is the 

harmonic average. 
2 For example, see MacBeth [1995], de La Grandville [1998], Jacquier [2003], Hughson [2006].   
3 That is, obviously, if returns 1, , nr r are not all the same, as assumed in this section.  If 1 2 nr r r   , then 

the problem is trivial as the arithmetic and geometric averages are equal. 
4 This fact is a corollary of the Jencen’s inequality.  
5 For the purposes of this section, the concerns about the quality of these approximations are set aside. 
6 For the purposes of this paper, the concern that the sample variance as defined in (7) is not an unbiased estimate is 

set aside.  
7 For example, see Bodie [1999], p. 751, Jordan [2008], p. 25, Pinto [2010], p. 49. 
8 According to Jean, Helms [1983], formula (A2) was originally proposed in Latane [1959]. 
9 For example, see Markowitz [1991], p. 122, Jean, Helms [1983], Booth, Fama [1992]. 
10 Reminder: in this section, it is assumed that returns 1, , nr r are not all the same (see endnote 3). 

11 The geometric average estimate (A1) is less than (A2) when 4A V , which is usually the case. 
12 We assume that the first and the second moments of the return distribution are finite. 
13 de La Grandville [1998] and de La Grandville [2002] contain a similar message. 
14 For example, see Klugman [1998], p. 582. 
15 This data is also presented in Maginn [2007], Exhibit 7-2, p. 410. 


